

§12-2 Geometric Sequences

- A geometric sequence is...
 - A sequence of numbers in which the ratio between terms is constant.
 - The ratio between terms is called the **common ratio**, r.
 - A sequence in which you obtain the next term by multiplying the same number to the previous term each time.
- Examples:
 - 4, 8, 16, 32, 64, 128, ...
 - $\circ 9, -3, 1, -\frac{1}{3}, \frac{1}{9}, -\frac{1}{27}, \dots$

§12-2 Geometric Sequences

• Determine if the sequence is geometric. If it is, state the common ratio.

Yes, it's geometric; $r = \frac{1}{4}$.

§12-2 Geometric Sequences

• Determine if the sequence is geometric. If it is, state the common ratio.

Yes, it's geometric; r = 6.

§12-2 Geometric Sequences

• Determine if the sequence is geometric. If it is, state the common ratio.

 $\begin{array}{c} \circ \ \ 7,14,21,28,...\\ \frac{124}{7} \ \ \frac{23}{124} \end{array}$

No, it's not geometric.

§12-2 Geometric Sequences

- Just like arithmetic sequences, once you know a little information about a sequence, you can determine a formula for a sequence.
- Then, you can use that formula to find any term of the sequence you're interested in.
- Example:
 - $^\circ$ Use the sequence: 9, 18, 36, 72, 144, \ldots
 - What is the 10th term of the sequence?
 - We don't want to have to list out all the terms do we?
 - So let's find a shorter way by doing a bit of thinking.

§12-2 Geometric Sequences

• Example:

- Use the sequence: 9, 18, 36, 72, 144, ...
- What is the 10th term of the sequence?
 Every time we get a new term, how much are we multiplying by? (What is the common ratio?)
 - 2
 - So, to get the 3rd term, how many 2s did we multiply by?
 9, 18, 36....
 - 2 2
 - To get the **3**rd term we multiplied by **2** 2s.
 - So how many 2s do you think we will need to add to get the $10^{\rm th}$ term? $\,$ 9 is correct!

§12-2 Geometric Sequences

- Example:
 - Use the sequence: 9, 18, 36, 72, 144, ...
 - What is the 10th term of the sequence?
 - How many 2s do you think we will need to add to get the 10th term?
 9 is correct!
 - What number did we start with? (What is a_1 ?)
 - *a*₁ = 9
 - So, we start with 9, then we multiply by 9 2s. How much is 9 2s?

 - Therefore, $a_{10} = 9 \cdot 512 = 4,608$.

§12-2 Geometric Sequences

- Let's formalize that by taking out the numbers and replacing them all with variables.
 - $^\circ$ What we did was we said to find any number term (the nth term), a_n
 - You find I less than that term, n-1
 - Multiply the common ratio, *r*, by itself that many times
 - Then multiply it to the value of the first term, a_1
 - $^\circ$ Therefore, the formula for any geometric sequence is: $a_n = a_1 \cdot r^{(n-1)}$

§12-2 Geometric Sequences

- · Let's try it again.
- Find the 102nd term in the sequence: -50, 50, -50, 50, -50, ...
 - r = **-** I
 - ∘ *a*₁ = **-50**

•
$$a_n = a_1 \cdot r^{n-1}$$

∘ a 102 ·()102 -1

$$a_{102} = -50 \cdot (-1)^{101}$$

- $a_{102} = -50 \cdot (-1)$
- $a_{102} = 50$